
Math. Sci. Lett. Vol. 1 No. 1  71-80 (2012)   

 

 

 

 

 
On The Numerical Solution of Partial integro-differential equations 

 

A. F. Soliman
1
, A M.A. EL-ASYED

2
, M. S. El-Azab

3
 

 
1
 MET Higher Institute of Engineering and Technology-Mansoura-Egypt 

2
 Faculty of Science, Alexandria University, Egypt 

3 Mathematics and Engineering Physics Department, Faculty of Engineering  Mansoura University, 

Mansoura, 35516, Egypt 

, amal_foad9@hotmail.comEmail:  

  

 

Abstract: In this paper, we consider the approximate solution of the partial integro-differential equation. 

To solve this problem, we introduce a new nonstandard time discretization scheme. Then the fourth order 

finite difference and collocation method is presented for the numerical solution of this type of partial 

integro-differential equation (PIDE). A composite weighted trapezoidal rule is manipulated to handle the 

numerical integrations which results in a closed-form difference scheme. The efficiency and accuracy of 

the scheme is validated by its application to one test problem which have exact solutions. Numerical 

results show that this fourth-order scheme has the expected accuracy. The most advantages of compact 

finite difference method for PIDE are that it obtains high order of accuracy, while the time complexity to 

solve the matrix equations after we use compact finite difference method on PIDE is O(N), and it can 

solve very general case of PIDE. 

Keywords: Compact finite difference method; PIDE; Time discretization; Partial integro-differential 

equations; High accuracy; Collocation method. 
 

 

1. Introduction 
Usually results in functional equations, e.g. partial differential equations, integral and integro-

differential equation, stochastic equations and others. Many mathematical formulations of physical 

phenomena contain integro-differential equations. These equations arise in fluid dynamics, biological 

models and chemical kinetics [8, 11]. Integro-differential equations are usually difficult to solve 

analytically so it is required to obtain an efficient approximate solution. The principal aim of this paper is 

to describe an approximate solution for a parabolic partial integro-differential equation representing heat 

conduction in material with positive memory. Classically, a heat conduction phenomenon is represented by 

a parabolic partial differential equation with an infinite heat propagation speed; this is a puzzling 

contradiction to the physics. Indeed, the material property of the past influences on that of the present, and 

therefore the heat propagation can be better understood if it is represented by an integro-differential 

equation rather than it is modeled by the usual parabolic equations. 

 

Solution of Integro-partial differential equations has recently attracted much attention of research. 

The motivation for such problems lies in different branches of physics, in rtheology, and especially in the 

theory of parabolic type. There are several methods for solving integro-differential equations, in (1988) E. 

G. Yanik and G. Fairweather use finite element methods for solving integro-differential equation of 

parabolic type [3]. In (1989) M. N. Leroux and V. Thomèe use Numerical solution of semilinear integro-

differential equations of parabolic type with non smooth data [9]. The stability of Ritz-Volterra projections 

and error estimates for finite element methods for a class of integro-differential equations of parabolic type 

is studied by Y. Lin and T. Zhang [10]. In (992), A. K. Pani, V. Thomèe, and L.B. Wahlbin use Numerical 

methods for hyperbolic and parabolic integro-differential equations [1]. Global and blow-up solutions of a 

Mathematical Sciences Letters                        
 
                                                                                                                 An International Journal   
© 2012 NSP 

 
       @ 2012 NSP 

       Natural Sciences Publishing Cor. 

mailto:amal_foad9@hotmail.com


  

                           A. F. Soliman
 
et. al :  On The Numerical Solution of Partial …….. 

 
 

72 

class of semilinear integro-differential equation, by Cui Shang-bin and Ma Yu-lan in (1994) [2]. I. H. 

Sloan and V. Thomèe, use Time discretization of an integro-differential equation of parabolic type [6]. 

 

Our contribution in this paper is to use the analysis of [4, 5] to introduce numerical scheme for 

solving partial integro-differential equations in one dimensional space with non-homogeneous Dirichlet 

boundary conditions, by develop a new fourth order accurate scheme. The suggested numerical scheme 

starts with the discretization in time by the 2-point Euler backward finite difference method. After that we 

deal with a combination of the compact finite difference method and the trapezoidal rule for calculating the 

integral term and then we use a collocation method to compute the unknown function and finally the 

obtained system of algebraic equations is solved by iterative methods. Then we use modified variational 

iteration method for solving partial integro-differential equations and make the comparison with fourth 

order accurate scheme. The proposed techniques are programmed using Matlab ver. 7.8.0.347 (R2009a). 

 

The paper is organized as follows: In Section 2, we give a brief introduction to a high accurate compact 

finite difference formula for partial integro-differential equations with varying boundary conditions. In 

Section 3, the proposed scheme is directly applicable to solve one numerical example to support the 

efficiency of the suggested numerical scheme. Conclusions are drawn in Section 4. 

 

 

2. Formulation of High-Order Compact Schemes 

Compact Schemes are based on a fourth-order accurate approximation to the derivative calculated 

from ordinary differential equation. To developed the scheme for one-dimensional uniform 

Cartesian grids with spacing  hx  ,  let us introduce the following notations [7]: If  )( jj xuu   

,  then we use notations 
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to denote the standard forward finite difference and backward finite difference schemes for first 

derivative. Also, 
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is the first-order central finite difference with respect to x. The standard second-order central finite 

difference is denoted as       jx u2    and is defined as 
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By using the Taylor’s series expansion, a fourth orders accurate finite difference for the first and 

second derivatives can be approximated by 
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2.1 Compact finite difference method for solving partial integro-differential equations 

Here, we use the fourth order compact finite difference method to solve problem  
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u t

















                          (2.1.1) 

),0(0),(0),( T,    ttbu,tau                                                                                   (2.1.2) 
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To construct a numerical solution, we first consider the nodal points     ),( jj tx  defined in the 

region  ],0[],[ Tba    where 

0 1 1 1, ,n n j ja x x x x b x x h        
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0 1 10 , .i i it t t T t t        
 

In such a case we have  
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The initial condition in equation (1.2) is approximated as follows:  
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Next, the 2-point Euler backward differentiation formula is manipulated to approximate 
,tu
 given 

in equation (1.1), at the time-level 1it   for .,2,1,0 i  Therefore, we have 
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where  
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where 

)(~)(*  xuxu ii .                                                                                                                  (2.1.7) 

Equation (2.1.6), rewrite as 
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Putting 
1,,1,  njxx j 

 in (2.1.3), then 
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where 
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A fourth-order accurate finite difference estimate for ( )u x  is, 
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Noting that   )( 2hO  term is included in equation (2.1.10), because we want to approximate it in 

order to construct an    )( 4hO  scheme. Applying            
x

x  to    ju" , we get 
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Substituting equation (2.1.11) into (2.1.10) yields 
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The fourth order accurate finite difference estimate for   )(" xu   is used from (2.1.12) to give 
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Then, a compact (implicit) approximation for )(" xu  with fourth-order accuracy will be given as 
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Using this estimate and considering the discrete solution of equation (2.1.9) which satisfies the 

approximation, we get 
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The later integral will be handled numerically using the composite weighted trapezoidal rule given 

by: 
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The substitutions of this equation into equation (2.1.16) yields 
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Let  )(xU i   be a function that approximates    ),( ii txu  for the time-level    iti   and is a linear 

combination of n+1 shape functions which is expressed as: 
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  are the unknown real coefficients, to be evaluated, and the   )(xm  are any 

knowing basis functions . 

The approximate solutions   )(xU i  for different time-levels are determined iteratively as follows. 
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0i  in equation (2.1.16) by the shape functions   1U  as is given in equation (2.1.20). Hence 
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Replacing  1U   by the approximate solution given by equation (2.1.20) yields the following linear 

system of 1n  equations  
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The system (2.1.23) consists of   )1( n  equation in the  )1( n   unknowns   n

mmc
01 

. To get a 

solution of this system we need two additional conditions. These conditions are obtained from the 

boundary conditions (2.1.2) 
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Since f and 0u
 are known at every grid point, the right hand side of equation (2.1.23) is known for 

all nodes. The system (2.1.23), equations (2.1.25) and (2.1.26) consist of )1( n  equations in 
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)sin(),(
2

xetxu tπ  

. 

We employ a compact difference scheme for the space derivative so that we get a full 

discretization scheme with error estimation )()( 4 OhO    We shall compare the results obtained 

by the suggested approximation scheme with the exact solution. 

 

 

Table 1. Comparison between exact and numerical solutions at  0001.0,1,02.0  t  

0001.0,1,01.0  t  respectively. 

 

x 0.02t  , 1  0.0001   0.01t  , 1  0.0001   

 
Exact  

solution 

Suggested 

scheme 

error Exact  

solution 

Suggested 

scheme 

error 

0 0.00 0.00 0.00 0.00 0.00 0.00 

0.1 2.5366E-001 2.5384E-001 1.8136E-004 2.7998E-001 2.8017E-001 2.0064E-004 

0.2 4.8249E-001 4.8263E-001 1.3926E-004 5.3254E-001 5.3269E-001 1.5461E-004 

0.3 6.6409E-001 6.6419E-001 1.0135E-004 7.3298E-001 7.3309E-001 1.1309E-004 

0.4 7.8069E-001 7.8074E-001 5.1969E-005 8.6167E-001 8.6173E-001 5.8807E-005 

0.5 8.2087E-001 8.2087E-001 2.3644E-006 9.0602E-001 9.0602E-001 1.0883E-006 

0.6 7.8069E-001 7.8064E-001 5.6463E-005 8.6167E-001 8.6161E-001 6.0876E-005 

0.7 6.6409E-001 6.6399E-001 1.0516E-004 7.3298E-001 7.3287E-001 1.1485E-004 

0.8 4.8249E-001 4.8235E-001 1.4202E-004 5.3254E-001 5.3239E-001 1.5587E-004 

0.9 2.5366E-001 2.5348E-001 1.8278E-004 2.7998E-001 2.7977E-001 2.0129E-004 

1 0.00 0.00 0.00 0.00 0.00 0.00 

 

 

 

Table 2. Comparison between exact and numerical solutions at    00001.0,1,1.0  t ,   and   

01.0,1,5.0  t , respectively. 

 

x 0.1t  , 1 , 0.00001   0.5t  , 1 , 0.01   

 
Exact  

solution 

Suggested 

scheme 

error Exact  

solution 

Suggested 

scheme 

error 

0 0 0 0 0 0 0 

0.1 1.1517E-001 1.1518E-001 8.1966E-006 2.2224E-003 2.2839E-003 6.1571E-005 

0.2 2.1907E-001 2.1907E-001 6.0145E-006 4.2273E-003 4.2925E-003 6.5201E-005 

0.3 3.0153E-001 3.0153E-001 4.1968E-006 5.8184E-003 5.8618E-003 4.3436E-005 

0.4 3.5447E-001 3.5447E-001 1.8736E-006 6.8399E-003 6.8504E-003 1.0561E-005 

0.5 3.7271E-001 3.7271E-001 6.2373E-007 7.1919E-003 7.1663E-003 2.5542E-005 

0.6 3.5446E-001 3.5446E-001 3.0599E-006 6.8399E-003 6.7808E-003 5.9095E-005 

0.7 3.0152E-001 3.0152E-001 5.2060E-006 5.8184E-003 5.7337E-003 8.4579E-005 

0.8 2.1907E-001 2.1907E-001 6.7475E-006 4.2273E-003 4.1324E-003 9.4883E-005 

0.9 1.1517E-001 1.1516E-001 8.5817E-006 2.2224E-003 2.1454E-003 7.7000E-005 

1 0 0 0 0 0 0 

 

Table 3. Comparison between exact and numerical solutions at   00005.0,4.0,3.0  t , , and  

04.0,3,7.0  t   respectively. 
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x 3.0t , 4.0 , 00005.0  7.0t , 3 , 04.0  

 
Exact 

solution 

Suggested 

scheme 
error 

Exact 

solution 

Suggested 

scheme 
error 

0 0 0 0 0 0 0 

0.1 1.5998E-002 1.6001E-002 1.9143E-006 3.0872E-004 3.1712E-004 8.4025E-006 

0.2 3.0432E-002 3.0432E-002 1.0104E-006 5.8722E-004 5.8988E-004 2.6648E-006 

0.3 4.1885E-002 4.1885E-002 2.5407E-007 8.0823E-004 7.9708E-004 1.1148E-005 

0.4 4.9239E-002 4.9238E-002 5.5018E-007 9.5014E-004 9.2196E-004 2.8178E-005 

0.5 5.1773E-002 5.1772E-002 1.2984E-006 9.9903E-004 9.5468E-004 4.4351E-005 

0.6 4.9239E-002 4.9237E-002 1.9195E-006 9.5014E-004 8.9397E-004 5.6169E-005 

0.7 4.1885E-002 4.1883E-002 2.3548E-006 8.0823E-004 7.4767E-004 6.0564E-005 

0.8 3.0432E-002 3.0429E-002 2.5363E-006 5.8722E-004 5.3249E-004 5.4717E-005 

0.9 1.5998E-002 1.5996E-002 2.7161E-006 3.0872E-004 2.7298E-004 3.5731E-005 

1 0 0 0 0 0 0 

 

4. Table 4. Comparison between exact and numerical solutions at   00002.0,2.0,008.0  t , 

, and 0005.0,1.0,,03.0  t , respectively. 

x 

0.008t , 0.2 , 0.00002  0.03t , 0.1 , 0.0005  

Exact 

solution 

Suggested 

scheme 
error 

Exact 

solution 

Suggested 

scheme 
error 

0 0 0 0 0 0 0 

0.1 
2.8555E-

001 
2.8556E-001 

8.2374E-

006 

2.2982E-

001 

2.2989E-

001 

7.4749E-

005 

0.2 
5.4316E-

001 
5.4316E-001 

6.1979E-

006 

4.3714E-

001 

4.3720E-

001 

5.8002E-

005 

0.3 
7.4759E-

001 
7.4760E-001 

4.4805E-

006 

6.0168E-

001 

6.0172E-

001 

3.8594E-

005 

0.4 
8.7885E-

001 
8.7885E-001 

2.2335E-

006 

7.0732E-

001 

7.0733E-

001 

1.5313E-

005 

0.5 
9.2407E-

001 
9.2407E-001 

2.2325E-

007 

7.4372E-

001 

7.4371E-

001 

9.4272E-

006 

0.6 
8.7885E-

001 
8.7884E-001 

2.6581E-

006 

7.0732E-

001 

7.0728E-

001 

3.3165E-

005 

0.7 
7.4759E-

001 
7.4759E-001 

4.8416E-

006 

6.0168E-

001 

6.0163E-

001 

5.3509E-

005 

0.8 
5.4316E-

001 
5.4315E-001 

6.4599E-

006 

4.3714E-

001 

4.3708E-

001 

6.8301E-

005 

0.9 
2.8555E-

001 
2.8554E-001 

8.3746E-

006 

2.2982E-

001 

2.2974E-

001 

7.9473E-

005 

1 0 0 0 0 0 0 

 

8.  Conclusion 

A fourth-order accurate compact finite difference scheme for partial integro-differential problems 

was developed. The method reduces the underlying problem to linear system of algebraic equations, which 

can be solved successively to obtain a numerical solution at varied time-levels. Numerical experiments 

which shown in the above scheme are good agreement with the exact ones. Moreover, the results in tables 

(1-4) confirm that the numerical solutions can be refined when the time-step τ is reduced, or the number of 

nodes is increased. 
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